HOT Smart Watch SDK Technical Specification

Hot Smart Watch SDK Technical Specification

Draft v0.01

HOT Smart Watch SDK Technical Specification

Table of Contents

Contents

] o] (=}l 00) a1 =) o} £ 2

(600] 0] 1] 0] ISR 2

O [(oo [¥ ot o o TR PP PP OP ST PPRRTPRRROt 8
O AN Lo [1= Yo TP ST SPPUSR 8
2. SDK DELAIIS ettt ettt r e s a e e e s bt e e s b ee e e e b e e e e e ra e e e e rae e e e reeeesnreeesnreas 8
2.1 Android and iOS Development PIatfOrmscoocciiiiiie ettt e e e araeee e 8
2.2 NAtiVE WatCh ADPS ..ot r e e e e e e e e e e e e e e s e bbbt e e e aeeeeeeeaeaaaaaaaeeeseeeaeaaaannnnnnnrenes 8
3. Android Development PlatfOrmm....... ...ttt e e e et e e e e e be e e e e e e s nbra e e e e e eennraneaas 8
HOT Smart Watch SDK CONEXL ..eeevuveiiiiiiieiiiiee ettt 9

HOT Smart Watch RESIAENT APPS .ooeiieiiiiiee ettt e e e et e e e e e e saara e e e e e eeasraneeeeens 9
HOT SMart WatCh GUST APPS ...vvvreeeeiiiiiieiiee e ettt eeeeessiireeeeeesseaseeeesssaaasseeessessssseeessssnsssaseaesnns 9

3.1 Device Management FUNCTIONSuu. ittt e ettt iss e e e e e e e ee et eesbaaase s e e s eeeeeseeesennnnns 9

HOTSMAITWATCN ClaSS .. iiiieeiiiiiiiee ettt ettt e ettt s e et abe s e e sabaeseesaaassseesaanssesssannns 9

Boolean RegisterApp(Context context, String applicationName, AppType type,int
PreferedSCreEPOSITION) . .c..vviiiciiie et ectee ettt et e e e e et e e et e e e e sare e e seabaeesnseeessraeaeanes 10

Screen Organisation IMAtliXuuuueeieiee e eeeeececre eetanaaeeeeeeeeeeennnnns 11

HOTDeviceContext OpenDevice(Context context, String applicationName, OnConStatusChangelListener

[T =Y o V=T o RSP UOOU PRSP 12
Boolean CloseDevice(HOTDeviceContext deviceContext)cccveeeeeeeeiriieeeeeeciireeee e, 13
Boolean TurnOnFastRefresh(int Duration,OnRefreshModeChangelistner listner) 14
Boolean GetBluetoothConnectioNSTatuS()ceeeeeeiiiieiiieiiiiirereeeeee e e e e eee e e e e eeeeaens 15
3.3 Communication Channel Managementcoiviiiiiiiiiie e e e rrre e e e e e aaaeeas 15
HOTCOMCNANE! ClaSS ...ceeiieiiieiie ettt e e 15

HOT Smart Watch SDK Technical Specification

Int WriteToChanel(int chanlD, ByteArray buffer, WriteCompleteListner listner).................. 16
T AT PSP PPUPOPRRPTN 16
3.4 Watchface Management FUNCHIONScoccuiiiiii ittt e e et e e e e e aarae e e e e e nnraeeas 17
WatCh-face FUNCHIONScoouiiiiii ettt st st sate e ebe e e n 17
HOTWALCNFACE ClaSS -.eeeetieiiieciieesitt ettt sttt sttt ettt e st e sat e e sabeesateesaes 17
Public HOTWatchFace(HOTDeviceContext deviceCONTEXt).....cccvuvrrrrereereereeiieeeeeeeeeeeeeeeeeieeinnns 17
BOOIEAN ClEAISCIEEN() .eeeeurreeeeiiieeeiiee ettt e e ettt e e et e e ete e e s tte e e e tteeesabeeeeasteeesessaeesassaeessssaeananes 17
Boolean SetBackgroundimage(Bitmap BMpP)....ccccueeecciieeciie e 18
Boolean LoadHourNeedle(Point needleFixPt, Point needlePivotPt,Bitmap needlelmg) 18

Boolean LoadMinutesNeedle(Point needleFixPt, Point needlePivotPt,Bitmap needlelmg) ...18

Boolean DisplayTimeParts(String timePart, Point location, Size size, NumberStyle style)......19
Boolean DisplayDateParts(String datePart,Point location,Size size, DateStyle style).............. 20
Boolean UploadWatChFace()ueeeeuieeeiiiieeeiiee ettt ettt ettt e e s eave e e e save e e s eanaeeenes 21
3.5 Message Display FUNCLIONSviiiiiiiiiiie ettt e e e e s sabae e e e s e s abree e e e e e s nsreeeas 21
HOTMESEDISPIAY Class...ueeieiiiiiiiiiieeiiciiiieee e eeeittt e e e sttt e e e s e st e e e e e s abeeeeessesnbaeeeeeessnnnseeeeas 21
Boolean HOTMesgDisplay(HOTDeviceContext deviceContext)ccceeccvveeeeeeecciieeeeeeeeciveennn. 22
Boolean DisplayAlert(String Caption,String Message, Boolean Vibrate)cccccccveevecinnneen... 22

Int DisplayMessageBox(String Caption,String Message, int Options,Boolean Vibrate,int TimeOut)

... 22
N X €l =T o] a o ST o Tt 4o o -3 PR PUR 23
HOTSMartWatChGraphics Classiiuccuiiiieeiiiiiiiie ettt e e e s e e e e aara e e e e e esnaaaeeee s 23
HOTSmartWatchGraphics(HOTDeviceContext deviceContext)cceeecvvveereeeeecineeeeeeeeennennnn. 23
Boolean ClearScreen(Color COION) iiiiie ettt e et e e see e e s tr e e e ebaeeesasaeeeeaens 24
Boolean SetScreenBitmap(Bitmap backGround,BackGroundBMPOption option)................. 24
Boolean DrawPixel(Point pt, COlOr COIOI) oot 25
Boolean DrawLine(Point ptStart, Point ptEnd, Color color)ccveivviiiiiieeeicceee e, 25
Boolean DrawRect(Rect rect,Color color, Short CoOlFill)ooovviiviiiniiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeee, 25

Boolean DrawCircle(Point center, int radius, Color COlOr).....ccovuvueiiiiiiirieeeee e, 26

HOT Smart Watch SDK Technical Specification

Boolean DrawBitmap(Point topLeftPoint, Bitmap bmp, BitmapOptions option)................... 26
Boolean DrawBitmap(Rect rect,Bitmap bmp,BitmapOptions option)ccccceeccuveeeeeeeecnnnenn.. 27

Boolean DrawText(String message,Point position,Size windowSize,FontSizeType fontSizeType, Align

AlIEN,SEYIE STYIR) et e e e et e e e e e et e e e e e e e aba e e e e e e e enraeaaas 28
Boolean UpdateScreen(DispStatusListner listner,DisplayOption option)........cccccceeeeeurnneen... 30
3.7 VIDration IMOTOT . ..ceiuiieiiee ittt ettt e b e ettt e b e e bt e e bt s beeesbeeebeeeneeen 31
HOTSMartWatCh ULty Class.......uueiii ittt e e e e aaaaee s 31
HOTSmartWatchUtility(HOTDeviceContext CONtEXE)uvveeeieeiiiieeeeiiiiieeee e 31
Boolean VibrateOn(VibrationType type, int DUration)cccccveeeeeieeeiiiee e 31
3.8 Back-light and LED Flash Light FUNCLIONSceiiiiiiiiiiiie et e e 32
HOTSMartWatChULility Class. ... e e e e e e e e e e e e 32
Boolean LEDFlash(int onSeconds,Brightness bright)cccccccoviiiieiiiiiiiiiee e, 32
Boolean LEDBackLight(int onSeconds, Brightness bright)ccceeiiiiiiiiieiicicee e, 33
3.9 ACCEIErOMETLEr & GYIOSCOPE ..eeiieeiciiiiieeeeeiiiiteeeeeeeeitreeeesesittreeeeeesaasttaeeeesaassaaeaeseasansraneeseaannssenes 33
HOTACCEIGYIrOMANAZET ClaSSvvviiieiiciiieeee ettt e e e e e s e e e e e e earrae e e e e e e anaaneeas 34
HOTAccelGyroManager(HOTDeviceContexXt CONTEXL)vvvereeerrvirreereeiiiirreeeeeeeecnreeeeeeeennneeeeees 34

Boolean InitGyroService(SensorSamplingRate samplingRateHint,int queueSize,OperationMode
mode,int timeOut,SensOrEVENtLIStNEr LISENEE,) ..vvviiiiieiirreee et 34

Boolean InitAccelService(SensorSamplingRate samplingRateHint,int queueSize,OperationMode

mode,int timeOut,SensorEventListner LIStNET,)cooeeiieeeiiciiiiirreeeeeeeeeeee e eeeeee e 36
Boolean InitTapService(TapType type, TapEventListner listner,)ccccccvveeeeieecciiieeeeeeecieeee. 39
Boolean InitStepCounter(StepListner Listner,int interval)cccccceeiiieiiiieee e, 40
2 ToTol (=TT W@ Lo Ty =T 1Y o Yol o =T | IR UUUR 40
B0O0Iean ClOSEACCEIEIOMETEI() ..uuvrrrrrirreiirireiiiiiiiieeeee et eeeeeeeeeeeeeeeeeens 41
Boolean StoPTaPAEIECTION() . .ccuvrrreieeiiiiiieeee e ettt eeeirr e eeetrre e e eeeebrreeeeeeeaareeeeeeenanseeeeas 41
B00Iean StOPSEEPCOUNTEI()..ecirrieeeiiieeiiieeeeiteeeeeteeesteeestreeesrtreeestbeeesssteeesssseeesnsseeessssneananes 41
4. WAtCh CanVas SDKccouiiiiiiiiie ettt ettt ettt e e st e e sttt e e s be e e e sbbeeesbbeeesabbeeesnbeeesanbaeesanbeeesanbeeesanrenenans 41
I o 1T o 1T £ PP PPPPR 42

4.2 HOTWAtChCANVas ClassS.......uuiiiiiiiiiiiiiiiiee e et e e ettt e e e taaee e e ettt s e e taaaassesasaasssssssnssssesssnnssssssnnnaees 43

HOT Smart Watch SDK Technical Specification

HOTWatchCanvas(ScreenType screenType,HOTDeviceContext context)......ccceevveereeeecnvvenennn. 43

HOTWatchCanvas(ScreenType screenType ,Bitmap background,HOTDeviceContext context)43

Void ClearCanvas(Color filCOION).... ...t e e e e e e bra e e e e e 44
boolean DisplayCanvas(DisplayStatusLisner listner,DisplayOption option)........ccccceeeuvnnenn.. 44
boolean UpdateCanvas(DisplayStatusLisner listner,DisplayOption option).......cccccceeuvnneeen.. 45
boolean AddObject(UIObject UIEIEMENT)c..viiieiiieeciiee ettt e e e sree e 46
HOTDeviceContext getConnectedWatCh().......ceeveveeeiciiieeciie et eree e e see e 46
INt GESCrEENNUMDEI() . .eiiiii et e e e e et e e e e e e e abr e e e e e e e e atraeeeeeeeanraeeeas 46
Bitmap getSCreenBitMaP() «ooccvveeeeeeeiciiiiie e ettt e e et e e e e s e e e e e e e e e e e e e sarra e e e e e e nnraeaaas 47
byte [] getScreenRAWAATa() ...c.uvvreieeiiiiiiiee et e e e e e e e e e e e e e anraee s 47
Void setScreenRawdata(byte [] SCre@NDAta)c.cceveurvriieeiiiiieeeeeeeeiireeeeeeeerreeeeeeenarrreeeeeens 47
O R U 0] =Y ot PP PPPP
A I N =1 U) (o] o F P PP PP TP PR PUPPPPPPPPTPPPRt 47
void Create(Rect rect, String caption, Bitmap icon,int UiElementID)cccccoveereeeecnreeeeeennn. 48
T U T1 2 =T o T=T o1 1 5 PP OTRR 48
void Create(Rect rect,String CaptioNn)......cc e cieieee e e e e 48
INEUIEIEMENTID ettt s e b b e s b e erees 49
void Create(Rect rect,String caption, Bitmap icon,int uiElementID)cccccccvveeeeiiiiiiieeenennn. 49
INE UTEIEMENTID ...eiiiiiiee ettt e st e e st e s e e s sabeeessabbeessabaeeesanes 49
void Create(String caption,int UIEIEMENTID)c.uvviiciiieicie et 49
TN UIEIEMENTID ettt et et b e b e et e s e e be e e beesbeeeneas 49
void setOnClickLisner(OnClickListner [IStNer)cooveeeeeeeiitiieeeeeeeeeeeeeeeeeeeeeeeeeee e 49
4.3.2 LISTBOX .eeuteeeuieeiteeeiee ettt ettt ettt ettt et ettt et b e et be e e b et e e ne e e nnr e e nheeennneennreen 50
void Create(int rowToDisp,String caption, String [] items,int uiElementID)c.ccccccvveeenneen. 51
T U T1 2 =T o 1= o1 1 D PP PRSPPI 51
Void setOnClickListner(ListBoxOnClickListner iISTNer)........ccccueeeeiieiciiiiiee et 51

T B 0 g T T=0=1 = T) P SPPPUPPN 51

HOT Smart Watch SDK Technical Specification

Void Create(Rect rect,String caption, Bitmap image,int uiElementID)52
INEUTEIEMENTID .. e b et a et e e e aeeeeeseeeeeaaaaaaaaeaaenns 52
Void setOnClickListner(OnClickListner listner).......ccccceveciveeeeeiecciieeeeeeees 52

A, NGTIVE WALCH SDK .ottt e e e e e e ettt e et bbb seeeeeesee e e e b e ba e seeeeeeeessrssaranaansseans 53
4.1 INItIaliZationN FUNCEIONS.....ciiiiiieetieeee ettt e e e e et ettt e e s e e e e e e e et e e b e ab e seeeeeseeresarasaannnsses 53

VO HOTINIESDK() c.vevviieriiiieiiiiteiie sttt 53

BOOL HOTInitAppContext(int * applID,char *appTitle[10], void MessageSink(int int ,int ,int, char *));

... 53
void MessageSink(int int,int ,int, char *). 53
BOOL HOTSetAppData(int applID,void * dataStruct).......ccccceveceiiieeeiiiiiieee e, 53
void * HOTGetAppData(int @PPID) ...uveeeeeee ettt ettt e ettt e e e e eetara e e e e e e e eaaraeaeeeenns 54
BOOL HOTEnableBluetoothNotifications(int appINStance)cccceeveeeecciiieeeeeecciieee e, 54
int HOTGetBluetoothStatus(iNt @PPID) ..ueeeeeecciiieee et e e e e e e e 54
void * HOTMalloc(int appID,int I€N); ..eeeeeieiiiieeee ettt e e e e e e e e aara e e e e 55
BOOL HOTFree(int applD,void FPtr); ...ueeeeee ettt e e s e e ee s 55
4.2 DiSPlay FUNCHIONScuiiiiiii ittt e e et e e e e e st e e e e s s bt e e e e e esabaaeeeeeesasbeeeeeeesnnsseeeas 55
I N €T T o] o1 {ot N SIU] o Tt 4[] o - PP SPPR 55
BOOL HOTActivateScreen(int applD, short SECONAS)eeevieeeiiiiieeeeeeeiiieeee e 55
[T ol e o] o R 55
VOid HOTCIEAISCIEEN() weeeeeeeiiieieeeeecitee et e e eectt et e e e e ettt e e e e e eetaaeeeeeeessasaeeeesessssaeeeeeeansssaeaanans 55
(D=2] o110] o IR PP UPPPPUPPURTRR 55
BOOL HOTPutPixel(int appID,int X,int y,Color COlOr)uuviiiiiiciiieee et 56
BOOL HOTDrawLine(int applID,int xS,int yS,int XE,int yE,Color col)cccvvverieeeeiiveeeeeeeennnenn.. 56
BOOL HOTDrawRect(DWORD applD,Rect rect,Color boderCol, Color fillCol)cceeuuunneen... 56
BOOL HOTDrawCircle(DWORD applD,int xC,int yC, int radius, Color boderCol) 57
A.2. 1 UL CONEIONS .ttt ettt ettt e st e sat e st e e sat e e sabeesabeesabeesabeesabeesaneesares 57

TextStatus HOTDispText (DWORD applD, char mesg,short xS, short yS, short width, short height,
FontType type, Allign aligNSTYIE) ...cco.eeeeeiieee e e et e e e eee s 57

HOT Smart Watch SDK Technical Specification

BOOL HOTMessageBox(int instID, char caption, char mesg, int userOption)cccuue...... 59
BOOL HOTListBox(int applID, char **options, int numltems,int uiElementID)............c........... 60
(o 011 o] o T3PPSR 61
BOOL HOTButton(int applD, int buttonID, Rect buttonSize, char * caption).......ccccccccuvueeee... 61
void HOTReadString(int instID,int inputType, iNt 1eN)cccoviiiiiiiiieceee e 62
O U 4111 Y U o ot o o [PP PPPR
Void HOTTurnOnFastRefresh(int instID,int timeSeconds)ccccoeevvvveeeeeeeiiireeeee e 63
BOOL HOTVibrateOn(int DUIation).......ccueeecuieeiiiieeeriieeesieeeeseeeesraeessteeesseneesssaesssnsaeeesnnns 64
[T ol e o] o R 64
BOOL HOTVibratePattern(VibrationType type, int DUration)ccccceeeccuveeeeeeeccciieee e, 64
BOOL HOTLEDFlash(int onSeconds, Brightness bright)..........cccccveeeiiiiiiiieiiicccieee e, 65
BOOL HOTLEDBackLight(int onSeconds,Brightness bright)ccccoeeviiiiiiiiiicceee e, 65
4.2.1 OS NOtIfications FUNCHIONS ...coouviiiiiiiie ettt ettt st e s e e s sabaee s
BOOL HOTSetOSPingCallBack(int iNStID)cvvieeeciieeeciieeeeiiee e eeiee et e e e sivee e s ivre e e saree e e 66
BOOL HOTSetTimerListner(DWORD instID, int timerlinterval, int repeat, int timerlD) 67
BOOL HOTStopTimer(DWORD instID,int timerID)cuuvveeeeeiiiieee et 67
BOOL HOTSubscribeFocusChangeEvent(DWORD iNStID).......cccuvvieeeeiiiiiiieee e e, 67
BOOL HOTSubscribeTouchEvents(DWORD iNStID)ccooeveivuumiriririiieeeeeeeeeeeeeeeeeeeeeeeeeeeeeennnnns 68
4.2.1 Communication Channel FUNCLIONScoiiiiiiiinieeiiee et s
BOOL HOTCreateComChanel(DWORD instID ,char appName[8], int chanellD)...................... 70
Int HOTWriteToChanel(DWORD instID,int chanlD, char * buffer, int len,void) 70
5. NAtive SDK APD SAMIPIES ...ttt es e e e bt s bt e eaeaeseeeeeaeaaaaaaaasaeeeseensnanan
Example 1: PiNg CallDaCKuuuniiiiiiiiiiieieeeeee 72
LT o (I APPSR 73

(ST 00] o Yol 8 1] o Y o TR

Smart Watch SDK Technical Specification

1. Introduction

The Hot Smart Watch SDK allows application developers to create watch native apps as well as
connected smartphone apps to utilise the power of HOT Smart Watch and create watchfaces and
applications.

1.1 Audience

The audience of these documents are developer community who are interested in developing Smart
Watch applications in different platforms. The initial release of SDK will allow Android Developers to
develop Phone application that communicate directly with the watch. A separate Native SDK will
allows developers skilled in C language to develop application running directly on the watch. An
iPhone SDK will be released soon to allow iPhone developer to access the power of HOT Smart Watch
in their applications.

2. SDK Details

There are three components in the SDK which are meant for different group of application
developers. These components are described below.

2.1 Android and iOS Development Platforms

The first two components of the SDK, Android and iOS development platforms are for smart phone
application developers. These SDK platforms allow Android and iOS apps to use watch as a peripheral
device. These SDK platforms are implemented in such a way that any Android or iOS developer can
develop applications that utilises the power of smart watch without much learning curve.

2.2 Native Watch Apps

The smart watch Native SDK allows programmers to develop watch apps that reside in watch
memory. These watch apps can be a standalone application or an extension of phone app which may
work in conjunction with corresponding phone app. Developing native watch app requires good
knowledge in C language and GCC compiler. Effort has been put to insulate programmers from the
hardware details and to make it fairly simple. A reasonably good C language programmer can build
standalone watch apps in Native SDK.

3. Android Development Platform

This section describes the API functions available on android platform. This is s similar to the API
available on iOS platform that will be released in the next version. Android Platform SDK is more
feature rich compared to iOS API. This will reflect in the HOT Smart Watch SDK as well.

Smart Watch SDK Technical Specification

HOT Smart Watch SDK Context

The implementation of android SDK allows multiple Phone application to communicate
simultaneously with the Smart Watch. In order to provide this feature, SDK creates a virtual
environment, which is further referenced in the document as “SDK Context”. SDK context is also
responsible for keeping track of all installed applications which use HOT Smart Watch SDK.
Applications using the SDK must register themself to SDK Context by calling “Register” function.

Android application which use the SDK services are divided in to two different categories. They are
detailed below.

HOT Smart Watch Resident Apps

These applications reserve a screen space on the watch that user can easily browse to. The watch
supports up to 10 custom resident apps. This space is shared between Native apps and Phone
Resident apps. The Phone Resident apps have following properties

e Ascreen space is reserved for the application.

e User can easily scroll to these application screens. It can use cache in the watch to keep icons
bitmaps etc.

e Maximum 10 applications are possible.

While registering a resident application with SDK Context the application is given a screen slot. If
preferred screen slot is not available, the SDK gives choice of free available slots. If there are no
available slots, then function launches a Ul to free a screen slot by removing previously installed
applications.

HOT Smart Watch Gust Apps

These guest apps do not have a permanent screen space in the watch. These apps use a Message box
type pop up screens to display information and get input from the user. The app constructs and
downloads this screen to be displayed at requested time on the watch. The app can also send a full
screen data to be displayed temporarily on the watch. Since this type of app does not reserve a
screen space, it is not accessible to the user via screen browsing.

e Screen space not reserved. Uses notification type pop up screen to display its screen
e Screen usage and display is triggered by the android application.

e Thereis no limit on the number of applications, but limited by available watch memory

3.1 Device Management Functions

HOTSmartWatch Class
This is the root class implementing HOT Smart Watch SDK connection and interaction with SDK
Context.

The functions in this class allow an app to establish itself in the SDK context, obtain a (virtual)
connection with a smart watch and execute SDK functions. The current version of SDK allows

Smart Watch SDK Technical Specification

multiple host apps to connect to the watch simultaneously and use its services. An application has to

register itself in the SDK context when it is executing for the first time.

Boolean RegisterApp(Context context, String applicationName, AppType type,int

preferedScreePosition)
Description

This function registers a Smart Watch application with the SDK context. SDK keeps track of all Smart

Watch Apps installed in the Mobile.

Parameters

Context

Android application context. Andoid application
context can be obtained by getApplicationContext

applicationName

Uniqgue Name of the application. SDK Keeps a
database of applications installed. The name is
maximum 12 characters alphanumeric string. This
name has to be registered and reserved from HOT
Smart Watch website. This is the name displayed in
the applications title bar on the watch screen.

type

Application type. (Ref App Type listed below)

preferedScreenPos

Analog Watch Face

Five screen positions are reserved for analog watch-
faces on the first column. Out of these reserved
positions 3-5 is available for customs analog watch
faces.

Digital Watch Face

Five positions are reserved for the digital watch-faces
in the second column. Out of these 5 locations 3-5 is
available for Custom watch faces.

Android App

Ten slots are dedicated for custom apps .Out of these
ten slots, first five are dedicated for Native apps. The
remaining positions (6-10) are available for Phone

apps.

If the requested “preferred position” is not available,
an option is given to the user to select alternate
position with a pop-up screen

HOT Smart Watch App Types

(See SDK context description given above)

APP_ANALOG_WATCHFACE

Analog Watch Face application. Andoid

10

Smart Watch SDK Technical Specification

application context can be obtained by
getApplicationContext

APP_DIGITAL_WATCHFACE Digital Watch Face application

APP_GUEST GUEST type HOT Smart Watch android
application .They will not reserve a space in
the screen. But uses a popup screen. Useful
for android service type apps to notify user
with some info.

APP_RESIDENT RESIDENT Type HOT Smart Watch
application. This application reserves a
screen space. When user enters this screen,
corresponding application in the phone is

notified.

APP_CANVAS_GUEST Similar to APP_GUEST, but uses SDKs
Canvas for easier Ul creation

APP_CANVAS RESIDENT Similar to APP_RESIDENT, but uses SDKs

Canvas for easier Ul creation

Screen Organisation Matrix

The below matrix shows the organisation of the watch Screens. The screen flow is divided in to a 5*5
matrix. At any given time, only one of the matrix screens is an active watch screen. User will scroll
horizontal and vertical to reach the target screen. The notification popup screen comes into focus
temporarily on top of the current active screen.

11

Smart Watch SDK Technical Specification

2 2 2

2

(Reserved for (Reserved for (Reserved for OS
Default Watch Default Watch Use)
face) face)

4 4 4 4 9

(Reserved for OS
Use)

Returns

Successful execution of the function returns true.
Throws

NotPairedException

AuthFailedException

UnknownException

HOTDeviceContext OpenDevice(Context context, String applicationName,
OnConStatusChangelListener Listener)

Description

This function opens a virtual connection with the watch. If the watch is already paired with the
phone, it will return an instance of HOTDeviceContext class. (see definition of HOTDeviceContext
class). The app has to register first using RegisterApp before calling this function.

12

Smart Watch SDK Technical Specification

Parameters

Context Android application context. Andoid application
context can be obtained by
getApplicationContext

applicationName Unique Name of the application initializing the
connection. SDK Keeps a database of application
installed and connected to watch.

Listener
Callback Event listner to obtain the the status of
Bluetooth connection

Callback Event Listener Details

enum BluetoothStatus{
Connected,
Disconnected,
Unknown,
¥
public interface OnConStatusChangelListener
{

public abstract void OnStatusChnage(BluetoothStatus status);

Returns

Successful execution of the function returns a valid HOTDeviceContext class instance representing an
established connection with SDK Context. This is equivalent to a virtual connection with the watch.

Throws
NotPairedException
AuthFailedException

UnknownException

Boolean CloseDevice(HOTDeviceContext deviceContext)
Description

This function closes the virtual connection with the watch and SDK Context.

Parameters

13

Smart Watch SDK Technical Specification

deviceContext Device context object of the currently opened
device.

Return

Return true if a valid device context is supplied and closed it properly.

Boolean TurnOnFastRefresh(int Duration,OnRefreshModeChangelListner listner)
Description

This function switches watch to fast refresh mode for specified period (in seconds). The watch will
return to normal mode after the specified period. If the application wants to keep the watch in fast
refresh mode for more than the specified period (or more than the allowed max time period of 3
minutes), then the application has to reissue another TurnOnFashRefresh command.
RefreshModeChange listener event (which is called when fast refresh stops) can be used to put the
device back to fast refresh mode.

Parameters

Duration Duration in seconds. Maximum is 180 (3 minutes)

Callback Event Listner Details

enum RefreshMode
{
Normal,

FastRefrshMode,

MediumRefreshMode

¥

public interface OnRefreshModeChangelListner

{

void OnRefreshModeChange(RefreshMode mode);

Return

Return true if function call successful.

14

Smart Watch SDK Technical Specification

Note: In normal mode the watch refreshes once a minute. In the fast refresh mode the watch
increase the refresh rate to 3 times a second. The fast refresh mode drains battery at much
faster rate and should be used sparingly.

Boolean GetBluetoothConnectionStatus()
Description

Function retrieves the current status of Bluetooth connection. This function is useful to check the
Bluetooth status if call-back was not registered.

Return

Return true if Bluetooth connected.

3.3 Communication Channel Management

The native apps can be standalone native apps or native apps that work with companion phone app.
The functions in this section are used to setup a communication channel between phone app and
the corresponding companion native app in the watch. These functions are used only when a
companion native app needs to communicate with the phone app. This channel is designed as a raw
data channel to allow the application to define own protocols and exchange any type of data.

HOTComcChanel class
This class implements communication channel functions.

Boolean CreateComChanel(String appName[10], int chanellD, CommunicationChanelListner
listner)
Description

This function creates a communication channel between phone application and watch application.
Communication end points are identified by Application Name and chanellD. SDK supports multiple
channels of communication between connected apps which is identified by channellD.

Parameters

appName A name used to identify the application end point. This
field along with chanellD will make a unique end
point

chanellD A unique chanel ID used to identify the end point. This
field along with appName will make a unique end
point. A maximum of 4 channels are supported.

15

Smart Watch SDK Technical Specification

listener Listner defines the callback function which is called
when there is data arriving from watch app.

Callback Event Listner Details

public interface ComChannellListners

{
void OnDataRecv(int chanelID,byte [] buffer);
void OnWriteComplete(int channellID,int status);

}

Applications using communication channel can implement this interface to receive
notifications on data reception and data send completion.

Return

Return true if function call successful.

Int WriteToChanel(int chanlD, ByteArray buffer, WriteCompleteListner listner)
Description

This function sends a packet of data to the registered end point.

Parameters

chanellD A unique channel ID used to identify the end
point.

buffer Data buffer to send

len Length of the buffer Max size is limited
10240bytes (10 blocks of 512 bytes)

listner The below function defined as the listener is called

when buffered data is completely transferred

or an error occurred

Callback Event Listner Details

16

Smart Watch SDK Technical Specification

Return

Function returns following values

1 Function call successful

-1 Chanel not opened

-2 Previous data is not transmitted completely.
Data not copied to the transmission buffer.

3.4 Watchface Management Functions

Watchface Management functions provide powerful features to define watchfaces. Both Digital and
Analog watchfaces are supported by the SDK. SDK functions generate Meta data which defines the
watchface. This data is then downloaded to the watch and interpreted by the watch-0S to display the
watchface. While creating a watchface user has to select a screen location for the watchface (This is
done while calling the RegisterApp function). Out of the supported 5 analog and 5 digital watchfaces
on the watch, 3 analog and 3 digital watchfaces are available for SDK apps.

Note: Watchface type is selected during the RegisterApp call.

Watch-face Functions

HOTWatchFace Class

Public Constructor

Public HOTWatchFace(HOTDeviceContext deviceContext)
Description

Initialise watchface interface

Parameters

deviceContext Device context object retuned by the OpenDevice
function.

Boolean ClearScreen()
Description

Sets background to white
Return

Return true if the function call successful.

17

Smart Watch SDK Technical Specification

Boolean SetBackgroundlmage(Bitmap bmp)

Description

Set screen background with the given bitmap

Parameters

bitmap

Return

Return true if function call is successful.

Provide a Monocrome bitmap which match the
size of watch face (144x1568 pixels, 1 bit per
pixel) .

Boolean LoadHourNeedle(Point needleFixPt, Point needlePivotPt,Bitmap needleImg)

Description

This function provides the needed information create hour needle. User has to provide 120 clock
position of the needle. The SDK creates other positions of the needle. This function is used only for

analog watchfaces.

needleFixPt

Location where needle is positioned in the
watchface screen image (144x168). This is
the position where the needle top right is
positioned. User should ensure the needle
will fit within the screen in all rotated
positions.

needlePivotPt

Needle rotated around this point. This is the
pivot point in the needle image from top-left
corner of the image.

needlelmage This is the image of the needle in its 120 clock
position. Needle Image to use. Image has to be
smaller than % screen height (1682) and smaller
than 24 pixels wide.

Return

Return true if function call is successful.

Boolean LoadMinutesNeedle(Point needleFixPt, Point needlePivotPt,Bitmap needlelmg)

Description

18

Smart Watch SDK Technical Specification

This function provides the needed information create minute needle. User has to provide 120 clock
position of the needle. The SDK creates other positions of the needle. The SDK creates other
positions of the needle. This function is used only for analog watchfaces.

needleFixPt Location where needle is positioned in the
watchface screen image (144x168). This is
the position where the needle top right is
positioned. User should ensure the needle
will fit within the screen in all rotated
positions.

needlePivotPt Needle rotated around this point. This is the
pivot point in the needle image from top-left
corner of the image.

needlelmage This is the image of the needle in its 120 clock
position. Needle Image to use. Image has to be
smaller than % screen height (1682) and smaller
than 24 pixels wide.

Return

Return true if function call is successful.

Boolean DisplayTimeParts(String timePart, Point location, Size size, NumberStyle style)
Description

While creating Analog or digital watchfaces, it is possible to display parts of the Time as text fields.
This function is used to place these units of the time (HH, MM, etc) on the screen.

timePart This string represents the part of the date or
time to be displayed at the specified location
HH:- Hour in 24 hour format

hh:- Hour in 12 hour format

MM:-Minutes

SS:- Seconds. Seconds are normally off.
They are switched on for about 90 seconds
only when user makes a long touch in the

watch-face
AMPM:-AM /PM part of the time

location The screen co-ordinate where location is
displays

Size Size of the window to display time part. Size

must be good enough to hold the content.

19

Smart Watch SDK Technical Specification

Otherwise content may clipped

style HOT Smart Watch OS support many different
number styles to select from. See below
table. Future versions of SDK will support
custom style

Number Styles

The below number styles are currently supported on the SDK. The future version will support custom

styles.
Code Size pixels | Font Image
(WxH)
0-9 digits | WFNS_SMALL_ARIALREVERSE 8x14 Arial Reverse 0
0-9 digits | WFNS_MEDIUM_ARIAL 16 x 24 Arial 0
0-9 digits | WFNS_SMALL_ARIAL 8x 14 Arial 0
0-9 digits | WFNS_ BIG_ARIALREVERSE 20x 35 Arial Reverse |
0-9 digits | WFNS_LARGE_ARIAL 34x64 Arial O
0-9 digits | WFNS_ MEDIUM_ARIALREVERSE 16 x 16 Digital L
Reverse
0-9 digits | WFNS_ MEDIUM_DIGITAL 24 x24 Digital 1
0-9 digits | WFNS_LARGE_SEVENSEG 32x48 7Segment D
0-9 digits | WFNS_BIG_SEVENSEG 24 x32 7 segment

Boolean DisplayDateParts(String datePart,Point location,Size size, DateStyle style)
Description

While creating Analog or digital watchfaces, it is possible to display parts of the Date as text fields.
This function is used to place these units of the date (DD MM etc) on the screen.

.Parameters
datePart This string represents the date part to be
displayed at the specified location
dd:- Day of week (SUN, MON etc)
DD:- Day of month
MM:-Month
YY: Year short form
YYYY: Year, long form
Location The screen co-ordinate where to display the
item.
Size Size of the window to display time part. Size

20

Smart Watch SDK Technical Specification

must be good enough to hold the content.
Otherwise content may clipped

Style HOT Smart Watch OS support many different
number styles to select from. The time table
above can be used for digits and weekday
table below can be used for weekday and

month
Date Part Styles
Code Size pixels | Font Image
(WxH)
Weekday
3 digit Sun to | WFDS_SMALL_ARIAL 42 x 16 Arial SUN
Sat
3 digit Sun to | WFDS_MEDIUM_DIGITAL 48 x 18 Digital SUH
Sat
3 digit Sun to | WFDS_LARGE_DIGITAL 72 x25 Digital SLH
Sat
Weekday full WFDS_WEEKFULL_DIGITAL | 144x18 | Digital SLINDRAY
Weekday Full WFDS_WEEKFULL_7SEG 144 x20 | 7 segment MONDARY
Month
3 digit Jan to | WFDS_MONTH_ARIAL 42 x 16 Arial JAN
Dec
3 digit Jan to | WFDS_MONTH_7SEG 64 x 32 7 segment L’HH
Dec

Boolean UploadWatchFace()
Description

This function uploads the meta-data generated to the watch. All the watchface functions are
buffered and sent after this function is called.

Return

Return true if function call is successful.

3.5 Message Display Functions

These set of function allow host app to display a Text/Message box in the watch screen and accept
simple Yes/No/Cancel input from the user.

HOTMesgDisplay Class
This class implements the functionality required for notification message display

Public Constructor

21

Smart Watch SDK Technical Specification

Boolean HOTMesgDisplay(HOTDeviceContext deviceContext)

Description
Initialise display system.

Parameters

deviceContext

Device context object retuned by the OpenDevice
function.

Boolean DisplayAlert(String Caption,String Message, Boolean Vibrate)

Description

This function displays an Alert box with text. The top line displays caption with bold text. Text may be

clipped if it is longer than 12-14 characters. The next 3 lines in the watch face are used to display the

message. The text may remain in the watchface until user touches it or cancels using gesture. A new

event from any other source can cause text disappear from the watch face.

Parameters

Caption Alert caption text. Max length is limited to 14
characters

Message Alert message maximum text length is limited to 28
characters.

Vibrate Provides a short vibration to grab user attention

Return

Return true if function call is successful.

Int DisplayMessageBox(String Caption,String Message, int Options,Boolean Vibrate,int

TimeOut)

Description

This function displays a message box in the watch screen. The top line displays caption with bold

text. Text may be clipped, if its length is bigger than 12-14 characters. The next 2 lines in the watch

face are used to display the message text. Fourth line displays buttons to accept user response. The

text may remain in the watch face until user touches it or cancels using gesture. A new event from

any other source can cause text disappear from the watch face. Message box is sticky and needs a

user response to remove it before time out period. If the user is not responding within the timeout

period, then Message box is discarded and timeout is sent back to the calling app.

Smart Watch SDK Technical Specification

Parameters

Caption Alert caption text. Max length is limited to
14 characters

Message Alert message maximum text length is
limited to 28 characters.

Options Gives the user response options.
YES_NO
OK_CANCEL

Vibrate Provides a short vibration to grab user
attention

Return

Function returns an integer value which indicates successful execution of the function.

MB_FAIL -1 MessageBox Failed .Either displayed or
not displayed. May be device
disconnected

MB_TIMEOUT -2 MessageBox may be displayed to user.
But no response received from the
watch after initial acknowledgment.
May be user not responded or device
disconnected

MB_OK 1 User response OK
MB_CANCEL 2 User response CANCEL
MB_YES 3 User response YES
MB_NO 4 User response NO

3.6 Graphics Functions
HOTSmartWatchGraphics Class

This class implements the graphics functions. The communication between watch and phone is
optimised for energy efficiency. The graphics function involves a lot of data exchange between phone
and watch. To minimize the data transfer and optimize the display refresh, the graphics functions are
buffered until UpdateScreen function is called.

Public Constructor

HOTSmartWatchGraphics(HOTDeviceContext deviceContext)
Description

23

Smart Watch SDK Technical Specification

Initialise graphics system.

Parameters

deviceContext Device context object retuned by the
OpenDevice function.

Boolean ClearScreen(Color color)

Description
This function Clears the screen and is typically called before starting a drawing.

Note: This function (and all other graphics functions) will not have any immediate effect on the
watch screen, unless otherwise UpdateScreen function is called.

Return

Return true if function call is successful.

Boolean SetScreenBitmap(Bitmap backGround,BackGroundBMPOption option)

Description

Sets a screen background bitmap based on the selected option . Screen real estate available to the
application's use is limited 144x150pixels. Pixel size is 1 bit.

Parameters
background Bitmap to load in to screen buffer
option See below given table for options

Bitmap display options

BM_TOPLEFT Align bitmap to top,left and overwrite the
existing content at the selected location

BM_TOPRIGHT Align bitmap to top,right and overwrite the
existing content at the selected location

BM_CENTER Align bitmap to center

BM_FILL Stretch/Shrink tmap to fill the screen

Return

24

Smart Watch SDK Technical Specification

Return true if function call is successful.

Boolean DrawPixel(Point pt, Color color)
Description
Draws a pixel at the absolute position given at pt parameter. Top-Left corner is represented as 0,0.

Note: While the watchface apps have access to 144x168 pixels of the watch display, other apps
have access to only 144x150pixels. The top 18 rows are used to display window title information.

Parameters

pt Contains the X,Y co-ordinate.

color Color. Currently supported only BLACK and
WHITE

Return

Return true if function call is successful.

Boolean DrawlLine(Point ptStart, Point ptEnd, Color color)

Description
Draws a line from ptStart to ptEnd in absolute coordinates. Top-Left corner is represented as 0,0

Note: While the watchface apps have access to 144x168 pixels of the watch display, other apps have
access to only 144x150pixels. The top 18 rows are used to display window title information.

Parameters

ptStart Line start point

ptEnd Line End Point

color Color. Currently supported only BLACK and
WHITE

Return

Return true if function call is successful.

Boolean DrawRect(Rect rect, Color color, short colFill)
Description

Draws a rectangle with the given co-ordinates. Top-Left corner is represented as 0, 0.

25

Smart Watch SDK Technical Specification

Note: While the watchface apps have access to 144x168 pixels of the watch display, other apps have
access to only 144x150pixels. The top 18 rows are used to display window title information.

Parameters

rect Co-ordinates to draw rectangle

line Color Color .Currently supported only BLACK and
WHITE

colFill Fill Color. If O, filling is not done

Return

Return true if function call is successful.

Boolean DrawcCircle(Point center, int radius, Color color)
Description

Draws a circle with the given co-ordinates. Top-Left corner is represented as 0, 0.

Note: While the watchface apps have access to 144x168 pixels of the watch display, other apps have
access to only 144x150pixels. The top 18 rows are used to display window title information.

Parameters

center Centrer of circle

radius Radius in pixels

color Color. Currently supported only BLACK and
WHITE

Return

Return true if function call is successful.

Boolean DrawBitmap(Point topLeftPoint, Bitmap bmp, BitmapOptions option)

Description

Draws a bitmap with given image bitmap. If the bitmap is larger than screen area (144x150), the
bitmap is clipped.

Note: While the watchface apps have access to 144x168 pixels of the watch display, other apps have
access to only 144x150pixels. The top 18 rows are used to display window title information

26

Smart Watch SDK Technical Specification

Parameters

point Top point to position bitmap

bmp Bitmap to place. Bitmap placed with its

original size

option Bitmap drawing options. See below table

Bitmap Options

BM_OVERWRITE Bitmap overwrite the background image in
the screen.

BM_OR Bitmap placed on the background image
using OR operation. Any black (foreground)
area will appear in the final image and mixed
with background image

BM_AND Bitmap placed on the background image
using AND operation. Black pixels will
appear only if both background and
foreground images have it in black.

BM_XOR Bitmap placed on the background image
using XOR operation. Black pixels will
appear only if either background or
foreground images have it in black.

BM_XNOR Bitmap placed on the background image
using !XOR operation.

Return

Return true if function executes successfully.

Boolean DrawBitmap(Rect rect,Bitmap bmp,BitmapOptions option)

Description

Draws a bitmap using a bitmap image and stretching its contents to a rectangle. Original bitmap is
compressed or enlarged to fit in the given rectangle.

Note: While the watchface apps have access to 144x168 pixels of the watch display, other apps have
access to only 144x150pixels. The top 18 rows are used to display window title information.

Parameters

rect Rect size to stretch built the bitmap

27

Smart Watch SDK Technical Specification

bmp Bitmap to place.

option Bitmap drawing options. See below table

Bitmap Options

BM_OVERWRITE Bitmap overwrite the background image in
the screen.
BM_OR Bitmap placed on the background image

using OR operation. Any black (foreground)
area will appear in the final image and mixed
with background image

BM_AND Bitmap placed on the background image
using AND operation. Black pixels will
appear only if both background and
foreground images have it in black.

BM_XOR Bitmap placed on the background image
using XOR operation. Black pixels will
appear only if either background or
foreground images have it in black.

BM_XNOR Bitmap placed on the background image
using 'XOR operation.

Return

Return true if function executes successfully.

Boolean DrawText(String message,Point position,Size windowSize,FontSizeType
fontSizeType, Align align,Style style)

Description

This function displays a text box on the watch screen. This function is used to display text in the
portion of a screen.

Note: While the watchface apps have access to 144x168 pixels of the watch display, other apps have
access to only 144x150pixels. The top 18 rows are used to display window title information.

Parameters

message Text to display in the text box.

position Top Left X,Y location of the string
windowsSize Size of the display string window
fontSizeType Font size and type. See table below to find

28

Smart Watch SDK Technical Specification

the possible options

align

Text alignment in the display.

style

Text Display Style. See table below to find
the possible option

FontSizeType

The below enumerations are used to select the font size currently supported by watch OS.

FONT_SMALL_NORMAL |9 Point Font Verdana

FONT_SMALL_TALL 12 Point Amplitude

FONT_MEDIUM_NORMAL |13 Point Font Verdana

FONT_MEDIUM_TALL 18 Point Amplitude

FONT_LARGE_NORMAL |14 Point Font \erdana

FONT_LARGE_TALL 20 Point Amplitude

Text Alignment

TXT_ALIGN_LEFT

Align text to left

TXT_ALIGN_CENTER

Align text to the center.

TXT_ALIGN_RIGHT

Align text to right.

Style

TEXT_SINGLE_LINE

Single Line of Text. Max size is limited to 14

TEXT_MULTI_LINE

Multiple line text. Max Size is limited to 48
characters.

TEXT_MULTI_LINE_SCROLL

Multiple line text with up-down scroll. Max
Size is limited to 128 characters.

Return

Return true if function executes successfully.

29

Smart Watch SDK Technical Specification

Boolean UpdateScreen(DispStatusListner listner,DisplayOption option)

Description
This is the function that flushes buffered commands and updates the screen.

Outputs current screen buffer to the selected screen location in the watch. While calling other
display related functions, SDK just prepares the screen meta-data in a temporary buffer. This meta-
data is send to watch after calling UpdateScreen function. This is done to improve the
communication efficiency between Watch and Phone. ClearScreen function clears the SDK screen
buffer.

Note: While installing an application, it is assigned a screen location. Refer Display Organisation
section in SDK Capability Documentation.

Callback Event Listener Details

public interface DispStatuslListner

{

void OnDisplayUpdate(int status);

}

SDK context may not transfer display data to the watch until user selects the app
in the watch and brings the app in to the focus. Apps can use this call back to
get notifications when screen data is transferred to watch and presented to
user.

Parameters

listener This call-back called after the display is
successfully updated on the watch. There
may be few seconds delay in the watch
updated.

Option This option allows the app to bring it’s screen

to focus (if it is not the current screen). If
user does not take any action after bringing
the screen to focus, the watch will roll back
to previous screen.

Display Options

DISP_UPDATEONLY This will update the app’s screen. If the app is

30

Smart Watch SDK Technical Specification

not currently in focus on the watch, no update
happens on the watch display.

DISP_UPDATENDISP

This will bring the app’s screen into focus
and update the screen with its graphics.

Return

Return true if function executes successfully.

3.7 Vibration Motor

HOTSmartWatchUtility class

This class implements the utility functions. It includes Vibration, LED and Backlight functions.

Public Constructor

HOTSmartWatchUtility(HOTDeviceContext context)

Description
Initialise utility functions.

Parameters

deviceContext

Device context object retuned by the
OpenDevice function.

Boolean VibrateOn(VibrationType type, int Duration)

Description

The watch vibration motor is used for alerting the user. The watch uses 5 patterns of alerts are used

for different indications and not shared for SDK. SDK provides 3 user assignable patterns to alert the

user.
Parameters

type VibrationType. See below for pre-defined types
Duration Duration specified in milliseconds

Vibration Types

VIBE_INCOMINGCALL

Medium pattern (used for notifying incoming call).
Not available for SDK Use

31

Smart Watch SDK Technical Specification

VIBE_MESGALERT Medium pattern (used for notifying message
alerts)

Not available for SDK Use

VIBE_PHONELOST Long spin (used for notifying Phone lost)

Not available for SDK Use

VIBE_BTCONNECT Small spin (used for notifying BT connect)

Not available for SDK Use

VIBE_TOUCH Very Small spin (used for single tactile touch)

Not available for SDK Use

VIBE_USER_SHORT Short Pattern reserved for user application.
Available for SDK use.

VIBE_USER_MEDIUM Medium Pattern reserved for user application.

Available for SDK use.

VIBE_USER _LONG Long Pattern reserved for user application.

Available for SDK use.

Return

Return true if function executes successfully.

3.8 Back-light and LED Flash Light Functions

The watch comes with LED backlight for viewing in dark as the e-paper display is not visible in dark.
The curve model also has additional flash light. SDK functions allow user to control Back Light and
Flash Light. LED Light Functions are available in both Phone SDK and Native Watch SDK.

HOTSmartWatchUtility class
This class implements the LED and flash light functions along with Vibration functions. See

construction definition in the section 3.7

Boolean LEDFlash(int onSeconds,Brightness bright)
Description

Function switch on the LED flash light for the specified time period and with specified brightness

32

Smart Watch SDK Technical Specification

Parameters

OnSeconds Duration specified in seconds (Max 10
seconds)

Bright Led brightness. See below table

BRIGHT_DIM Ya th of Full brightness

BRIGHT_HALF 1/2" of Full Brightness

BRIGHT_FULL Full Brightness

Return

Return true if function executes successfully.

Boolean LEDBackLight(int onSeconds, Brightness bright)

Description

This function turns on the display backlight for the specified time period and with specified

brightness

Parameters

OnSeconds Duration specified in seconds (Max 20
seconds)

Bright Led brightness. See below table

Brightness Options

BRIGHT_DIM Ya th of Full brightness
BRIGHT_HALF 1/2" of Full Brightness
BRIGHT_FULL Full Brightness

Return

Return true if function executes successfully.

3.9 Accelerometer & Gyroscope

HOT Smart Watch is equipped with a gyroscope and accelerometer for gesture detection and fitness

functions.

33

Smart Watch SDK Technical Specification

HOTAccelGyroManager class
This class implements Accelerometer and Gyroscope functions.

Public Constructor

HOTAccelGyroManager(HOTDeviceContext context)

Description
Initialise Accel and Gyro functions.

Parameters

deviceContext Device context object retuned by the
OpenDevice function.

Boolean InitGyroService(SensorSamplingRate samplingRateHint,int
queueSize,OperationMode mode,int timeOut,SensorEventListner Listner,)
Description

Initialises Gyroscope (gyro) functionality and register an event handler to receive gyro change events.
During the gyro functionality the watch is either put in fast or medium refresh mode so that the
sensor data is sent periodically to the phone.

The gyroscope consumes high power (many times more than the accelerometer). The gyroscope
functions need to be used sparingly. Due to this higher power consumption, the gyroscope functions
have a time limit after which they stop sending data. The calling app has to re-issue this command.

Parameters

Rate Sampling rate at which to sample the gyro
data. To limit power consumption, user
should avoid using higher speeds.
SENSOR_NORMAL
SENSOR_GAME
SENSOR_HIGHSPEED

queueSize Maximum Number of samples to be stored
(default size is 100). If this queue size is
small, the data may be lost in normal mode
where watch is sending data once in 5
seconds.

Mode The mode in which the watch sends data to
phone. Please see below table for options

timeOut Time out period in seconds.

34

Smart Watch SDK Technical Specification

After time out period gyro service stops
automatically. This functionality is added to
save battery.

Listener Listener for sensor events. See
SensorEventListner definition

Gyro Data Delivery Mode

SENSOR_NORMAL_MODE |The sensor data is sent to phone once in 5 seconds as

watch is in medium refresh mode and wakes once in 5
seconds

SENSOR_REALTIME_MODE |The watch is put in fast refresh mode and sends data up to
3 times a second as the sensor data gets available.

Callback Event Listner Details

35

Smart Watch SDK Technical Specification

enum SensorType

{
Accelerometer,
Gyroscope,
Tap,
Step
}
public interface SensorEventListner
{
void OnSensorChanged(SensorType sensorType,int numSamples, float [] values);
}
sensorType SensorType enum value used to identify the sensor.

numSamples

Number of samples in the values array. Each sample contains 3 co-
ordinates.

-1:-in numSamples indicate gyro timed out

Values

Value[n*0] — X value
value[n*1] —Y Value
value[n*2] —Z Value

“n” represent the sample number. If the num samples is 10 then “n” falls
between 0-9.

Note : Unit is radians/second

Return

Return true if function executes successfully.

Boolean InitAccelService(SensorSamplingRate samplingRateHint,int

queueSize,OperationMode mode,int timeOut,SensorEventListner Listner,)

Description

Initialises Accelerometer (Accel) functionality and register an event handler to receive Accel change

events. During the Accel functionality the watch is either put in fast or medium refresh mode so that

the sensor data is sent periodically to the phone.

36

Smart Watch SDK Technical Specification

The Accel consumes power both due to accelerometer consumption and faster refresh rate for the

watch. The Accel functions need to be used sparingly. Due to this higher power consumption, the

Accel functions have a time limit after which they stop sending data. The calling app has to re-issue

this command.

Initialises accelerometer functionality and register an event handler to receive acceleration change

events. Certain accelerometer modes will work only in fast refresh mode. When device switches back

to normal mode from fast refresh mode, the sdk will stop sending the data.

Parameters

Rate Sampling rate at which to sample the gyro data. To limit
power consumption, user should avoid using higher speeds.
SENSOR_NORMAL
SENSOR_GAME
SENSOR_HIGHSPEED

gueueSize Maximum Number of samples to be stored (default size is
100). If this queue size is small, the data may be lost in normal
mode where watch is sending data once in 5 seconds.

mode The mode in which the watch sends data to phone. Please see
below table for options

timeOut Time out period in seconds.
After time out period gyro service stops automatically. This
functionality is added to save battery

listener Listener for sensor events. See SensorEventListner definition

Sensor Data Delivery Mode

SENSOR_NORMAL_MODE

The sensor data is sent to phone once in 5 seconds as
watch is in medium refresh mode and wakes once in 5
seconds

SENSOR_REALTIME_MODE

The watch is put in fast refresh mode and sends data up to
3 times a second as the sensor data gets available.

37

Smart Watch SDK Technical Specification

enum SensorType

{
Accelerometer,
Gyroscope,
Tap,
Step
}
public interface SensorEventListner
{
void OnSensorChanged(SensorType sensorType,int numSamples, float [] values);
}
sensorType SensorType enum value used to identify the sensor.
numSamples Number of samples in the values array. Each sample contains 3 co-
ordinates.
-1 :-in numSamples indicate accelerometer timed out
Values Value[n*0] — X value
value[n*1] —Y Value
value[n*2] —Z Value
“n” represent the sample number. If the num samples is 10 then “n” falls
between 0-9.
Note : Unit is radians/second
Return

Return true if function executes successfully.

38

Smart Watch SDK Technical Specification

Boolean InitTapService(TapType type, TapEventListner listner,)
Description
Initialises the tap detection from the accelerometer and register an event handler to receive tap

events. If user taps the watch, it will cause watch to wake up and send a message to phone to notify
the tap event.

Parameters

Type There are 2 predefined tap events which
device is capable. This parameter array
carries the types of tap application want to
subscribe. See below table for possible
values

listener Listener for sensor events. See
TapEventListner definition

Sensor Data Delivery Mode

TAP_STRAP_TAP Single tap on metal to strap area facing the user
TAP_SWITCH_TAP Single tap on the metal near power switch of the watch

Callback Event Listner Details

enum TapEventType

{

SrapTap,

SwitchTap

}

public interface TapEventListner

{

void OnTapEvent(TapEventType tapEventType);

}

tapEventType Type of tap event detected. See

TapEventType definition above

39

Smart Watch SDK Technical Specification

Return

Return true if function executes successfully.

Boolean InitStepCounter(StepListner Listner,int interval)
Description
Initialise pedometer for counting the steps. The pedometer will consume additional power on the

watch when it is on. This function should be used only when step count is required. The listener is
called once a minute to report the total steps walked and time it took to walk these steps.

Parameters
Listner Listner defines a function with following interface,
interval Steps count notification interval in seconds

Callback Event Listener Details

public interface StepCountListner

{

void OnStepCount(int stepCount, int timeInSecons);

}
stepCount Accumulated steps
timelnSeconds Total time walked . In a minute if the user

walked for 30 seconds and stayed idle for 30
seconds , then this value shows 30 seconds

Note: Steps counter is reset by the hardware. When registered for the step
counter that first delivered values are the current counter values.

Return

Return true if function executes successfully.

Boolean CloseGyroscope()

Description
Application not interested in gyro events anymore and instruct watch to stop sending it

Return

40

Smart Watch SDK Technical Specification

Return true if function executes successfully.

Boolean CloseAccelerometer()

Description
Application not interested in accelerometer events anymore and instruct watch to stop sending it
Return

Return true if function executes successfully.

Boolean StopTapdetection()

Description
Application not interested in tap events anymore and instruct watch to stop sending it
Return

Return true if function executes successfully.

Boolean StopStepCounter()

Description
Application stops the step counting.
Return

Return true if function executes successfully.

4. Watch Canvas SDK

The Canvas SDK provides easier Ul object generation (buttons, sliders etc.) using a canvas provided by
the SDK. This functionality is built around Android Canvas 2D Drawing APIl. Android 2D Canvas API
allows applications to manipulate a bitmap and draw different shapes and graphics in to it. Watch
Canvas SDK wraps this functionality and provides a rich event driven programming environment.
With the help of Android Canvas API it generates a bitmap at smart phone application and sends it to
the Watch and renders it at watch face. Watch user who is seeing a familiar form type display at the
watch screen and responds to it by clicking on the Ul elements such as button clicks etc. The Host
android application (running on the phone) which subscribed to the Ul click events will receive a
notification from the watch with details such as click co-ordinates etc. Watch Canvas SDK interprets
this and identifies whether the click happens on button area. If so fires the corresponding button
click handler in the WatchCanvas class.

The Watch Canvas functionality is very similar to the working of a HTML pages. In case of HTML,
every Ul event causes a post back to server and the event is handled at the server side. Watch
canvas works very similar to this where watch-face does the role of browser and Phone app
assumes the role of server.

41

Smart Watch SDK Technical Specification

Ul Event Call backs

4.1 Highlights

e Ul Elements supported by the watch canvas sub system

o Graphics objects supported by Android Canvas APl functions which includes
http://developer.android.com/reference/android/graphics/Canvas.html

= Pixel functions
= Graphics shapes
o Buttons
o Radio Buttons

o Selection Boxes

42

http://developer.android.com/reference/android/graphics/Canvas.html

Smart Watch SDK Technical Specification

o Input boxes

o Labels (captions)

o Fonts and Char size selectable
o Image control

o Progress bar

e Partial rendering of watch screen for fast Ul update.
o Eclipse plugin for Ul design (Phase 2)
o Android like Ul definition language

Note: First version of the SDK release may carry a subset of above mentioned functions.

4.2 HOTWatchCanvas Class

This class inherits all functionality provided by the Android Canvas class. These base class functions
can accessed at the below URL

http://developer.android.com/reference/android/graphics/Canvas.html

In addition to base class functionality this class is extended to make it a container of other Ul
elements like buttons, selection boxes etc,etc. All these Ul elements are defined as inner classes to
WatchCanvas class. All these Ul elements are derived from a common base class named UlObject.

Public Constructor

HOTWatchCanvas(ScreenType screenType,HOTDeviceContext context)

Description

This is the default constructor of the Canvas. This function internally creates a blank bitmap
equivalent to the size of watch face.

Parameters

deviceContext An instance of deviceContext which
represents the connection with a HOT Smart
Watch

screenType Type of screen indication screen capabilities
SCRN_LOWRESMONO =144*150, 1 Bit pixels

HOTWatchCanvas(ScreenType screenType ,Bitmap background, HOTDeviceContext context)

Description

43

http://developer.android.com/reference/android/graphics/Canvas.html

Smart Watch SDK Technical Specification

This is the overloaded constructor of the Canvas. This function uses the bitmap supplied as the
background. It stretches the bitmap to match the screen size.

Parameters

background Bitmap to use as the background for the
canvas screen

deviceContext An instance of HOTSmartWatch class which
represents the connection with a HOT Watch

screenType Type of screen indication screen capabilities
SCRN_LOWRESMONO =144*150, 1 Bit pixels

Void ClearCanvas(Color filColor)

Description

Function clears the canvas and fills with the given color

Parameters

FilColor Clears the screen. Supported only BLACK and
WHITE

Return

none

boolean DisplayCanvas(DisplayStatusLisner listner,DisplayOption option)
Description

This function sends the complete bitmap to the watch and displays it on the watch.

Parameters

Listener Call back function to receive the status of
display success.

option This option allows the app to bring it’s screen

to focus (if it is not the current screen). If
user does not take any action after bringing
the screen to focus, the watch will roll back
to previous screen.

Callback Event Listner Details

44

Smart Watch SDK Technical Specification

public interface DispStatusListner

{

void OnDisplayUpdate(int status);

}

SDK context may not transfer display data to the watch until user selects the app
in the watch and brings the app in to the focus.Apps can use this call back to
get notifications when screen data transferred to watch and presented to user.

status 1-Data Delivered
0-Data Delivery Failed

-1-Screen Displayed but no user
response within time out period.

Return

Return true if function executes successfully.

boolean UpdateCanvas(DisplayStatusLisner listner,DisplayOption option)
Description

This function sends only changed portion of the screen from the last display command or update
command. It may send multiple blocks of data (bitmaps) to the watch with co-ordinates to place
them in certain portions of the screen. This will make the screen refresh more efficient by updating
only the changed portion such as pressed button state.

Parameters

listner Call back function to receive the status of
display success.

option This option allows the app to bring it’s screen

to focus (if it is not the current screen). If
user does not take any action after bringing
the screen to focus, the watch will roll back
to previous screen.

Callback Event Listener Details

public interface DispStatusListner

{

void OnDisplayUpdate(int status);

45

Smart Watch SDK Technical Specification

}

SDK context may not transfer display data to the watch until user selects the app
in the watch and brings the app in to the focus. Apps can use this call back to
get notifications when screen data transferred to watch and presented to user.

statusl-Data Delivered
0-Data Delivery Failed

-1-Screen Displayed but no user response
within time out period.

Return

Return true if function executes successfully.

boolean AddObject(UIObject uiElement)
Description

This function is used to add UlObjects to canvas surface. This is not updated to watch till the
DisplayCanvas or UpdateCanvas is called

Parameters

uiElement Objects like Button, CheckBox, ListBox etc

Note: uiElement base class is explained in the next section
Return

Return true if function executes successfully.

Helper Function

The below functions are helper functions provided in canvas class for ease of use. They are repeating
functions which can be called from other classes.

HOTDeviceContext getConnectedWatch()
Description

Function retrieves the read only instance of connected watch
Return

A HOTDeviceContext object instance

int getScreenNumber()
Description

Retrieves the current active screen number

Return

46

Smart Watch SDK Technical Specification

Returns screen number

Bitmap getScreenBitmap()
Description

Retrieves the screen bitmap
Return

Returns screen bitmap is successful.

byte [] getScreenRawdata()
Description

Retrieves the screen data as a byte array. This is the same data send to the watch.
Return

Returns screen raw data.

Void setScreenRawdata(byte [] screenData)
Description

Load byte array in to screen data buffer.
4.2.1 Ul Objects

This section describes the Ul Objects available for use in the WatchCanvas class

4.2.1.1 Button
7 | HotWatch = E<™

The button class provides ability to create different style buttons on the screen. The default types of
buttons are bitmap buttons with or without borders. It is also possible to create buttons with
captions on it. Above figure shows a screen shot from the existing watch screen. This screen is a good
example of multiple bitmap buttons.

Properties

47

Smart Watch SDK Technical Specification

Caption Text to display on the button face. Max 10
character

Icon Button bitmap

Width Width in pixels

Height Height in pixels

TopX Position of button in X co-ordinates

TopY Position of button in X co-ordinates

ButtonType Ul_TEXTBUTTON :- Text Button
Ul_BMPBUTTON:- Bitmap button
Ul_COMPBUTTON:- Both Text and Caption

Font Text Font

Note: Due to size and resolution limitation on the watch, careful attention is needed for the design of
the buttons, fonts and other Ul objects.

Methods

void Create(Rect rect, String caption, Bitmap icon,int uiElementID)
Description

Creates the Button with bitmap and optional caption.

Parameters

rect Position and size of the button
caption Caption of the button

icon | Bitmap to display on the button

User assigned ID for the button. This is passed to click

int uiElementID listner to identify the button.

void Create(Rect rect,String caption)
Description

Creates a blank Button with or without caption.

Parameters
Rect Position and size of the button
Caption Caption of the button

48

Smart Watch SDK Technical Specification

int uiElementID

User assigned ID for the button. This is passed to click
listner to identify the button.

void Create(Rect rect,String caption, Bitmap icon,int uiElementID)

Description

Creates the Button with bitmap.

Parameters
Rect Position and size of the button
Icon Bitmap to display on the button
User assigned ID for the button. This is passed to click
int uiElementID

listner to identify the button.

void Create(String caption,int uiElementID)
Description

Creates the Button with caption where the size is adjusted to fit the caption

Parameters

Caption

Caption of the button

int uiElementID

User assigned ID for the button. This is passed to click
listner to identify the button.

void setOnClickLisner(OnClickListner listner)
Description

This registers a call-back for button press

Parameters

Listener

| Call back function

Callback Event Listener Details

public interface setOnClicklListner

{

void OnClick(int uiElementID);

49

Smart Watch SDK Technical Specification

4.3.2 ListBox
List box class allows user create a list box. The user can select an option from the
given list. Below given screen is good example of List Box usage.

The list box concept on the watch is different from the normal windows based GUI.
The list box is a one row item with title on the left and options on the right. With
each touch, the options on the right change to next item. In the example given below
“Font:Med” is a list box. Font is the caption and Medium is an option item in the list
box. The other option items in this list box are small and large. With each touch, the
option item changes to Small->Medium->Large in sequence. The below image has 4
list boxes with caption Power, Gesture and Font.

7| HotWatch ESEETC)

rl
T
5 1

a7 34p

Power:Optimal

Gesture:Partial
Font:Med

About - BT Addr

Properties

Caption Text to display on the Left

Row Row to display option box 1-4

ItemFont Item Font

CaptionFont Caption Font

ItemColor Color (Black,White) background changes to
opposite

CaptionColor Color (Black,White) background changes to
opposite

50

Smart Watch SDK Technical Specification

void Create(int rowToDisp,String caption, String [] items,int uiElementID)
Description

Creates a list box with given parameters.

Parameters

rowToDisp Row number where to display list box
Caption List box caption

Items String array containing items

User assigned ID for the ListBox. This is passed to click

int uiElementiD listner to identify the ListBox.

Void setOnClickListner(ListBoxOnClickListner listner)
Description

Call-back for the listbox with current selection on the list box

Parameters

Listener Call back function

Callback Event Listner Details

public interface ListBoxOnClickListner
{
void OnItemClick(int itemID,int uiElementID);
}
itemID Current Item displayed in the listbox
uiElementID User assigned list item ID
4.3.3 ImageBox
This class is used to display an image
Properties
Caption Image Caption

51

Smart Watch SDK Technical Specification

Rect Size of image window

TopX X position of image

TopY Y Position

Bitmap Display Image

CaptionColor Color (Black,White) background changes to
opposite

CaptionFont

Void Create(Rect rect,String caption, Bitmap image,int uiElementID)

Description

Creates the Button with given properties.

Parameters

Rect Position and size of the ImageView
Caption Caption of the Image

Image Bitmap to display on the Image View

int uiElementID

User assigned ID for the button. This is passed to click
listner to identify the button.

Void setOnClickListner(OnClickListner listner)
Description
Attach OnClickListner

Parameters

Listener

Call back function

Callback Event Listener Details

public interface setOnClickListner

{

void OnClick(int uiElementID);

52

Smart Watch SDK Technical Specification

4. Native Watch SDK

Native Watch SDK is used to develop native watch applications in C language. The Native Watch apps
are installed in the watch via connected phone. The Native SDK applications can be configured to
start when OS starts, or when the user enter the application screen. These applications are loaded
into specific locations in the memory. OS calls the “main” function to start the application. The main
function must terminate immediately after registering for the interested events. If application takes
too long to come out from any of SDK notification processing, the Watch restart and the application
may be tagged for bad behaviour. OS will refuse to load such application when OS restarts.

4.1 Initialization Functions

void HOTInitSDK()
Description

This function initialises all the SDK functions.
Return

None.

BooL HOTInitAppContext(int *applD,char *appTitle[12], void MessageSink(int int ,int ,int, char *
));

Description

This function is used to initialise an app instance. Watch OS keeps track of instances using appID. The
MessageSink is a callback function that is called for all the events (touch, gesture etc) related to the

app.

Parameters

appID Instance ID of the application returned by the
function call.

appTitle Application name to display on the title bar. This
must be a unique application name.

void MessageSink(int int int int, char *) This is the call back function which receives all
OS notifications. The sample application explains
the usage and functionality of this call-back.

Return

Return true if function executes successfully.

BooL HOTSetAppData(int applD,void * dataStruct)
Description

This function allows applications to keep a data structure pointer in applications instance data.
Application can define own specific data structure and keep application state in it. Whenever there is
a call-back to an application, it can retrieve this structure to remember the application state.

53

Smart Watch SDK Technical Specification

Since the app does not have access to global data and has access only to local variables and heap
data (HOTmalloc()), it’s allocated memory pointer needs to be saved for later reuse when app gets
control back. The app uses this function to save these allocated memory pointer data.

Parameters

appID Instance ID of the application returned by the
function call.

dataStruct Pointer to an application defined data structure.

Return

Returns true if function call is successful.

void * HOTGetAppData(int appID)
Description

This function retrieves the application data from the OS Instance table. Application stores its instance
specific data to remember application state.

Return

Returns a valid pointer if successful. Otherwise return zero.

Boor. HOTEnableBluetoothNotifications(int appInstance)
Description

This function enables Bluetooth notification to deliver to the application.
Callback Notification

Whenever there is change in Bluetooth connection status, the status is delivered to app’s
MessageSink call-back function.

Parameters of MessageSink callback

applD Application 1D

mesglD SWM_BLUTOOTH_STATUS

paraml SWB_CONNECTED : Bluetooth connected
SWB DISCONNECTED: Bluetooth
disconnected.

param2 Not used

buffer Not used

Return

Return true if function executes successfully.

int HOTGetBluetoothStatus(int appID)
Description

Function returns the current status of Bluetooth connection with host phone

54

Smart Watch SDK Technical Specification

Return
1- If Connected

0-If not connected.

void * HOTMalloc(int applD,int len);
Description

This function allocate memory for application needs.
Return
Null — Memory allocation failed

Otherwise returns a valid pointer

BooL HOTFree(int applD,void *ptr);
Description

This function frees the allocated memory.
Return

Return true if function executes successfully.

4.2 Display Functions

4.2.1 Graphics Functions

BooL HOTActivateScreen(int applD, short seconds)

Description

This function forces the watch to display the screen selected by the application. Application
can use this when it need user attention and to display screen forcefully. This is a temporary focus for
this app. After a timeout period, the control is given back to previous screen. A maximum time that
an app can request for forcibly coming to front is 15 seconds.

Return

Return true if function executes successfully.

Void HOTClearScreen()

Description

This function clears the screen content and set all pixel to white.
Return

void

55

Smart Watch SDK Technical Specification

BooL HOTPutPixel(int applD,int x,int y,Color color)
Description

This function draws a pixel in the app’s screen.

appID Application ID returned by InitAppContext call

X x Co-ordinate

Y y Co-ordinate

color Color of the pixel . Currently supported BLACK and
WHITE only. Color is an enum value defined in the SDK

Return

Return true if function executes successfully.

BooL HOTDrawLine(int applD,int xS,int yS,int xXE,int yE,Color col)

Description

This function draws a line in the app’s screen

applID Application ID returned by InitAppContext call

xS Starting point x Co-ordinate

yS Starting point y Co-ordinate

XE Ending point x Co-Ordinate

yE Ending point y Co-ordinate

col Color of the line. Currently supported BLACK and
WHITE only. Color is an enum value defined in the SDK

Return

Return true if function executes successfully.

BooL HOTDrawRect(DWORD applID,Rect rect,Color boderCol, Color fillCol)

Description

This function draws a rectangle in the app’s screen

applID Application ID returned by InitAppContext
call
Rect Rectangle co-ordinates. Rect is a structure

define in SDK. Rect contains the X)Y co-
ordinate of the starting point , and width and

56

Smart Watch SDK Technical Specification

height of the rectangle in pixels

borderCol Color of the border line Currently
supported BLACK and WHITE only. Color is an
enum value defined in the SDK with option
for selecting BLACK and WHITE

fillCol Color to fill inside the rectangle. Color is an
enum value defined in the SDK with option
for selecting BLACK and WHITE

Return

Return true if function executes successfully.

BooL HOTDrawCircle(DWORD applD,int xC,int yC, int radius, Color boderCol)

Description

This function draws a Circle in the app’s screen.

applID Application ID returned by InitAppContext
call

radius Radius in pixels

xC X co-ordinate of the center

yC Y co-ordinate of the center

BoderCol Circle's border color. Color is an enum value
defined in the SDK with option for selecting
BLACK and WHITE

Return

Return true if function executes successfully.

4.2.1 Ul Controls

These are the display utility functions to draw string, display message box etc.

TextStatus HOTDispText (DWORD applD, char mesg,short xS, short yS, short width, short

height, FontType type, Allign alignStyle)

Description

This function displays text with various formatting options.

applID Application ID returned by InitAppContext call

Smart Watch SDK Technical Specification

Mesg Message to display. Max chars to display is limited to 14

XS X co-ordinate of the starting position to text display box

yS Y co-ordinate of Starting position of text display box

Width Width of the text display area. Average width of a character is 8 pix.
This can vary depending on the selected text style. Maximum size of
screen is 144 pixels

Height Hight of the display area. Small: 14pix, Medium: 21Pix, Large:24pix

fontType Type of font selected. FontType is a enum value defined in the
SDK.See table below to find the possible options

Align Align type selected. Align is an enum value defined in the SDK.
Options are
TXT_LEFT
TXT_CENTER
TXT_RIGHT

Style Text box style . SDK provides option to display Single Line, Multiline

and Multiline with scroll options. Ref description of style given
below

FontSizeType

This enum value is used to select the font size and type which are currently supported by watch OS.

FONT_SMALL_NORMAL

9 Point Font Verdana

FONT_SMALL_TALL

12 Point Amplitude

FONT_MEDIUM_NORMAL |13 Point Font Verdana

FONT_MEDIUM_TALL

18 Point Amplitude

FONT_LARGE_NORMAL

14 Point Font Verdana

FONT_LARGE_TALL

20 Point Amplitude

58

Smart Watch SDK Technical Specification

Style

TEXT_SINGLE_LINE Single Line of Text . Max size is limited to 14

TEXT_MULTI_LINE Multiple line text. Max Size is limited to 64
characters.

TEXT_MULTI_LINE_SCROLL Multiple line text with up-down scroll. Max
Size is limited to 128 characters.

Return

Returns TextStatus
TXT_SUCCESS Test Display success
TXT_OVERFLOW_CLIP Text size exceeds the limits applicable in the

selected mode and clipped. This is a
warning message and text is displayed
on the watch.

TXT_WINDOWSMALL Selected text window is too small for the
selected font . Function fails

Boor. HOTMessageBox(int instID, char caption, char mesg, int userOption)
Description

This function displays MessageBox screen for the app.

instID Application ID returned by InitAppContext call
caption Caption text
Mssg Message to display.
userOption Options to display for the user to select from
MB_OKCANCEL
MB_YESNO

Callback Notification

Message box function will cause a message box to be displayed on watch face. This will remain there
until the user selects an option. An OS message will be delivered to MessageSink callback after user
respond to it. If user response is not received in a predefined time period , then it will send a time
out message.

Parameters of MessageSink callback

59

Smart Watch SDK Technical Specification

applD Application ID
mesglD SWM_MESSAGEBOX
paraml This will contain user selected option
Possible values are
MB_OK
MB_CANCEL
MB_YES
MB_NO
param2 Not used
buffer Not used
Return

Return true if function executes successfully.

BooL HOTListBox(int applD, char **options, int numltems,int uiElementID)
Description

This function displays list box with selections for the list item.

{ﬂ HotWatch E=E)

i

Settingsl 07:34p

Power:Optimal
Gesture:Partial
Font:Med

About - BT Addr

The list box concept on the watch is different from the normal windows based GUI.
The list box is a one row item with title on the left and options on the right. With
each touch, the options on the right change to next item. In the example given below
“Font:Med” is a list box. Font is the caption and Medium is an option item in the list
box. The other option items in this list box are small and large. With each touch, the
option item changes to Small->Medium->Large in sequence. The below image has 4
list boxes with caption Power, Gesture and Font.

60

Smart Watch SDK Technical Specification

applID Application ID returned by InitAppContext
call

Options to display in the list
options

numltems Number of items in the array

Callback Notification

ListBox function displays a ListBox on watch face. This will remain there until user selects an option.
An OS message will be delivered to MessageSink callback after user respond to it. If user response is
not received in a predefined time period , then it will send a time out message.

Parameters of MessageSink callback

applD Application 1D
mesglD SWM_LISTBOX
paraml This will contain user selected options index
param?2

User assigned uiElementID for the object
buffer Not used
Return

Return true if function executes successfully.

BooL HOTButton(int applD, int buttonID, Rect buttonSize, char * caption)
Description

Creates a button control on the watch screen. When user presses the button, the corresponding
handler function is called.

Parameters

applD Application ID

buttonlD Unique Id assigned to the button. This value
is passed to call back function.

buttonSize Size and location of the button. Rect structure
is defined in the SDK.

Caption Caption of the button. Maximum 12
characters

61

Smart Watch SDK Technical Specification

Callback Notification

An OS message will be delivered to MessageSink callback when user touchs the button. An
application can display more than one button on the screen. Touched button is identified by Button
ID

Parameters of MessageSink callback

applD Application ID
mesgID SWM_BUTTONPRESS
paraml Button ID

param2 Not used

buffer Not used

Return

Return true if function executes successfully.

void HOTReadString(int instID,int inputType, int len)
Description

This function is used to read data from the watch virtual keyboard. The watch provides a T9 keyboard
similar to one found in smaller cell phones and telephones. User can enter numerical or text data
from this keyboard.

Parameters

instID Instance ID

inputType Based on this value function displays either Number or Alpha
Numeric key board.

Len Number of characters to read. This must be less than 50 which is
the maximum available space in the keyboard buffer.

Call-back Notification

Read String function remains on the screen until user inputs something and touches the
text/number. The user input will be delivered to MessageSink function. The character pointer
returned is a pointer to keyboard buffer. It can be over written by next call to ReadString function. It
is the applications responsibility to preserve the data if needed. The space reserved for keyboard
buffer is 50 characters.

Parameters of MessageSink callback

applD Application ID
mesglID SWM_READSTRING

62

Smart Watch SDK Technical Specification

paraml Number of characters typed by the user.
Excluding “enter” key.

param2 Not used
buffer Contains the pointer to keybord buffer
Return

Return true if function executes successfully.

4.2.1 Utility Functions

Void HOTTurnOnFastRefresh(int instID,int timeSeconds)
Description

This function switches the watch to fast refresh mode. In fast refresh mode the OS is checking the
requests 3 times a minute and services the calls at faster rate. In normal mode, the OS serves
application only once in a minute. Touch Interrupt and timer calls happen without this delay.

Parameters

instID Instance ID

timelnSeconds Number of seconds to keep watch in fast
refresh mode. Maxim allowed is 180 seconds

Callback Notification

An OS message will be delivered to MessageSink to indicate the change in the state of operation of
Watch.

applD Application 1D
mesglID SWM_FASTREFRSH_CHANGE
paraml 0:-Changed back to normal mode.

1:-Changed to fast refresh mode.

param2 Not used
buffer Not used
Return

Return true if function executes successfully.

63

Smart Watch SDK Technical Specification

Boor HOTVibrateOn(int Duration)

Description
This function switches on vibration motor for the duration provided in milliseconds

Parameters

Duration Duration specified in milliseconds (max 1500)

Return

Return true if function executes successfully.

Boor HOTVibratePattern(VibrationType type, int Duration)
Description

The watch vibration motor is used for alerting the user. About 5 patterns of alerts are used for
different indications. Other than these per-assigned types there are three user assignable patterns
reserved to implement application specific notification.

Parameters
type VibrationType. See below for pre-defined types
Duration If zero, Pattern is run once, Otherwise Pattern
is repeated this many times (max 5 times)
Alert Options
VIBE_INCOMINGCALL Medium pattern (used for notifying incoming
call). Not available for SDK Use
VIBE_MESGALERT Medium pattern (used for notifying message
alerts)
Not available for SDK Use
VIBE_PHONELOST Long spin (used for notifying Phone lost)
Not available for SDK Use
VIBE_BTCONNECT Small spin (used for notifying BT connect)

64

Smart Watch SDK Technical Specification

Not available for SDK Use

VIBE_TOUCH

Very Small spin (used for single tactile touch)

Not available for SDK Use

VIBE_USER_SHORT

Short Pattern reserved for user application.

Available for SDK use.

VIBE_USER_MEDIUM

Available for SDK use.

Medium Pattern reserved for user application.

VIBE_USER_LONG

Long Pattern reserved for user application.

Available for SDK use.

Return

Return true if function executes successfully.

BooL HOTLEDFlash(int onSeconds, Brightness bright)

Description

Function switch on the LED flash light for the specified time period.

Parameters

OnSeconds Duration specified in seconds (max 10
seconds)

Bright Led brightness. See below table

BRIGHT_DIM Y4 th of Full brightness

BRIGHT_HALF 1/2" of Full Brightness

BRIGHT_FULL Full Brightness

Return

Return true if function executes successfully.

Boor HOTLEDBackLight(int onSeconds,Brightness bright)

Description

65

Smart Watch SDK Technical Specification

This function switches on the backlight with specified brightness

Parameters

OnSeconds Duration specified in seconds (max 20
seconds)

Bright Led brightness. See below table

BRIGHT_DIM Ya th of Full brightness

BRIGHT HALF 1/2" of Full Brightness

BRIGHT_FULL Full Brightness

Return

Return true if function executes successfully.

4.2.1 OS Notifications Functions

BooL HOTSetOSPingCallBack(int instID)
Description

This function set up the call back function which OS will call every time it wakeup from the sleep.
While in normal mode OS wakes up from sleep once in every minute. In fast refresh mode, the ping is
called once a second. Depending on the OS mode, the ping function frequency changes. Application
can use ping function if it needs to do some back ground functions.

Parameters

instiD Instance ID

Callback Notification

MessageSink function is called at the above mentioned frequency.

applD Application 1D
mesgID SWM_OSPING
paraml Not used
param?2 Not used
buffer Not used
Return

Return true if function call successful.

66

Smart Watch SDK Technical Specification

BooL HOTSetTimerListner(int instID, int timerInterval, int repeat, int timerID)

Description
This function creates a low resolution timer.

Parameters

instiD

Instance ID

timerinterval

Timer interval in seconds

repeat Timer called once if set to 0 or repeating if
settol
timerlD User assigned timer ID

Callback Notification

MessageSink function is called at requested frequency to notify timer event.

applD Application 1D
mesgID SWM_TIMER
paraml Not used
param2 Not used
buffer Not used
Return
Return true if function executes successfully.
BooL HOTStopTimer(int instID,int timerID)
Description
This function stops the timer.
Parameters
instID Instance ID
timerlD User assigned timer ID
Return

Return true if function executes successfully.

BooL HOTSubscribeFocusChangeEvent(int instID)

Description

Smart Watch SDK Technical Specification

Registers call back for app coming into focus. ON_FOCUS message is send to the application when
user enters the application’s screen. This same function is called once again when user leaves the
screen.

Parameters

instID Instance ID

Callback Notification

MessageSink function is called to notify focus change event.

applD Application 1D
mesglID SWM_ONFOCUS_CHANGE
paraml 1- Application got focus

2- Application Lost focus

param2 Not used
buffer Not used
Return

Return true if function executes successfully.

BooL HOTSubscribeTouchEvents(int instID)
Description

Registers a call back to receive screen touch events.

Parameters

instiD Instance ID

Callback Notification

MessageSink function is called to notify touch events

applD Application 1D
mesglID SWM_ONTOUCH
paraml X: Co-ordinate of touch
param?2 Y: Co-ordinate of touch
buffer Not used

Return

68

Smart Watch SDK Technical Specification

Return true if function executes successfully.

BooL HOTGetTouchPoints (int instID,int *numPoints,int *xPoints,int *yPoints)
Description

This function can be used in conjunction with touch events to retrieve the touch pattern. Useful to
create touch gusters.

Parameters

instID Instance ID

numPoints Number of points available in OS buffer
xPoints X Co-Ordinates of the points

yPoints Y Co-Ordinates of the points

Return

Return true if function executes successfully.

BooL HOTUnSubscribeEvents(int instID,int mesgID)
Description

Registers a call back to receive screen touch events.

Parameters

instID Instance ID

mesgID ID of the mesg to unsubscribe. Only those
message has subscribe functions can be un
subscribed

Return

Return true if function executes successfully.

4.2.1 Communication Channel Functions

The native apps can be standalone native apps or native apps that work with companion phone app.
The functions in this section are used to setup a communication channel between phone app and
the corresponding companion native app in the watch. These functions are used only when a
companion native app needs to communicate with the phone app. This channel is designed as a raw
data channel to allow the application to define own protocols and exchange any type of data.

69

Smart Watch SDK Technical Specification

BooL HOTCreateComChanel(int instID ,char appName[8], int chanellD)
Description

This function creates a communication channel between phone application and watch application.
Communication end points are identified by “AppName” and “chanellD”.

Parameters

instID Instance ID

appName A name used to identify the application end
point. This field along with chanellD will
make a unique end point

chanellD A unique chanel ID used to identify the end
point. This field along with appName
will make a unique end point

Callback Notification

When a communication channel is created, any data received from the remote end will be delivered
to MessageSink callback with SWM_DATARECVD as the message id.

applD Application 1D
mesglID SWM_DATARECVD
paraml Bytes received

param?2

buffer pointer to custom data
Return

Return true if function call successful.

Int HOTWriteToChanel(int instID,int chanlD, char * buffer, int len,void)
Description

This function sends a packet of data to the registered end point.

Parameters

instID Instance ID

chanellD VA unique channel ID used to identify the end
point. T

buffer Data buffer to send

70

Smart Watch SDK Technical Specification

len

Length of the buffer. Max size is limited 200
bytes

Callback Notification

MessageSink call back is called after sending the complete data.

applD Application ID
mesglD SWM_DATASENT
paraml Bytes send
param2 Not used
buffer Not used
Return

Please see the table for the meaning of return values

1 Function call successful
-1 Chanel not opened
-2

Previous data is not transmitted completely.
Date not copied to the transmission buffer.

71

Smart Watch SDK Technical Specification

5. Native SDK App Samples

Example 1: Ping Callback
This example demonstrates a simple app which registers with OS for a ping call back. It displays a
message box when ping is received.

Header File

Appl.h

#include <stdio.h>
void main(int arg, char* args);

void MessageSink(int applID, int mesgID, int param1,int param2, char * buffer);

Implementation File

App.c

#include "appl.h"

#include "SwSdk.h"
#include <stdlib.h>
#include <string.h>

void main(int arg, char* args)

{
int applD;

HOTInitAppContext(&applD,"a",MessageSink);

HOTSetOSPingCallBack(applID);
}

void MessageSink(int appID,int mesgID,int param1,int param2, char * buffer)

{
switch(mesgID)
{
case SWM_OSPING:

sprint(HOTGenString, "Os ping %d,%d\r\n", appID,mesgID)
HOTDisplayMessageBox(“PING”, HOTGenString, 0);
break;

}

72

Smart Watch SDK Technical Specification

Example 2:
Native Application With App Data Example

Header File

App2.H

#include <stdio.h>
#include <tchar.h>

struct MyPingCounter2
{

int counter;
char appName[10];
|3

void main(int arg, char* args);
void MessageSink(int appID,int mesglD,int param1,int param2, char * buffer);

Implementation File

App.c

#include "app2.h"

#include "SwSdk.h"
#include <stdlib.h>
#include <string.h>

void main(int arg, char* args)

{
int applD;

MyPingCounter2 *appData =(MyPingCounter2 *) HOTMalloc(sizeof(MyPingCounter));

HOTInitAppContext(&applID,"b",MessageSink);
HOTSetOSPingCallBack(applID);
appData[0].counter=0;
strcpy(appData[0].appName,"App Two");
HOTSetAppData(applID,(void *) appData);

}

void MessageSink(int appID,int mesgID,int param1,int param2, char * buffer)
{
switch(mesgID)
{
case SWM_OSPING:
MyPingCounter2 *counter;
counter =(MyPingCounter2 *) HOTGetAppData(applD);
sprintf(HOTGenString, "Os ping Recv by App2: %s ,AppiD:%d MesgID: %d OSPingCounter :

73

Smart Watch SDK Technical Specification

%d\r\n",counter->appName ,applD,mesglID,counter->counter);
HOTDisplayMessageBox(“PING”, HOTGenString, 0);

counter->counter++;
break;

6. Android SDK Phone App Samples

Example 1: Sample Canvas App
The Below sample app demonstrates the usage of Canvas SDK to display “Hello World” with two
buttons.

public class MainActivity extends Activity {

WatchCanvas canvas;

Bitmap bitMap;

HOTDeviceContext hotContext;

@Override

public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);

HOTSmartWatch hotSmartWatch = new HOTSmartWatch();

try

{

hotContext = hotSmartWatch.OpenDevice(getApplicationContext(), "TestApp",
new HotWatchConlListner());

}

catch(HOTNotRegistered exp)

{

hotSmartWatch.RegisterApp(getApplicationContext(), "TestApp",

HOTSmartWatch.AppType.APP_GUEST, 0);

}

bitMap = Bitmap.createBitmap(144,150,Bitmap.Config. ARGB_8888);

canvas = new WatchCanvas (ScreenType.SCRN_LOWRESMONO,bitMap,hotContext);

WatchCanvas.Button button = canvas.new Button();

Rect rect = new Rect(10, 10, 50, 30);

button.Create(rect, "OK");

ButtonOnelisner but1Clik = new ButtonOnelisner();

button.setOnClickListner(but1Clik);

WatchCanvas.Button buttonCan = canvas.new Button();

Rect rect2 = new Rect(100, 10, 140, 30);

74

Smart Watch SDK Technical Specification

buttonCan.Create(rect2, "Cancel");
ButtonTwolisner but2Clik = new ButtonTwolisner();
button.setOnClickListner(but2Clik);

String str = "Hello World";

Paint brush = new Paint();

brush.setColor(Color.BLACK);

canvas.drawText(str, 10, 50, brush);
canvas.AddUIObject(button);

canvas.AddUIObject(buttonCan);

canvas.DisplayCanvas(null, DisplayOption.DISP_UPDATENDISP);

class ImgViewClick implements View.OnTouchListener
{
@Override
public boolean onTouch(View arg0, MotionEvent argl) {
// TODO Auto-generated method stub
if(argl.getAction()==MotionEvent. ACTION_DOWN)
{
int x= (int)argl.getX();
inty = (int) argl.getY();
canvas.lsClicked(new Point(x, y));

}

return false;

}
class ButtonOnelisner implements WatchCanvas.OnClickListner
{
@Override
public void OnClick(UIObject uiElement) {
// TODO Auto-generated method stub
WatchCanvas.Button buttonClked = (WatchCanvas.Button)uiElement;
buttonClked.captionText = "Touched";
canvas.DisplayCanvas(null, DisplayOption.DISP_UPDATENDISP);

}

class ButtonTwolLisner implements WatchCanvas.OnClickListner
{
@Override
public void OnClick(UIObject uiElement) {
// TODO Auto-generated method stub
WatchCanvas.Button buttonClked = (WatchCanvas.Button)uiElement;

75

Smart Watch SDK Technical Specification

buttonClked.captionText = "Touched";
public class MainActivity extends Activity {
WatchCanvas canvas;
Bitmap bitMap;
HOTDeviceContext hotContext;
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedinstanceState);
setContentView(R.layout.activity_main);
HOTSmartWatch hotSmartWatch = new HOTSmartWatch();
try
{
hotContext = hotSmartWatch.OpenDevice(getApplicationContext(), "TestApp", new
HotWatchConlListner());
}
catch(HOTNotRegistered exp)
{
hotSmartWatch.RegisterApp(getApplicationContext(), "TestApp",
HOTSmartWatch.AppType.APP_GUEST, 0);
}
bitMap = Bitmap.createBitmap(144,150,Bitmap.Config. ARGB_8888);
canvas = new WatchCanvas (ScreenType.SCRN_LOWRESMONO, bitMap,hotContext);
WatchCanvas.Button button = canvas.new Button();
Rect rect = new Rect(10, 10, 50, 30);
button.Create(rect, "OK");
ButtonOnelisner but1Clik = new ButtonOnelisner();
button.setOnClickListner(but1Clik);
WatchCanvas.Button buttonCan = canvas.new Button();
Rect rect2 = new Rect(100, 10, 140, 30);
buttonCan.Create(rect2, "Cancel");
ButtonTwolisner but2Clik = new ButtonTwolisner();
button.setOnClickListner(but2Clik);
String str = "Hello World";
Paint brush = new Paint();
brush.setColor(Color.BLACK);
canvas.drawText(str, 10, 50, brush);
canvas.AddUIObject(button);
canvas.AddUIObject(buttonCan);
canvas.DisplayCanvas(null, DisplayOption.DISP_UPDATENDISP);

class ImgViewClick implements View.OnTouchListener

{

76

Smart Watch SDK Technical Specification

@Override

public boolean onTouch(View arg0, MotionEvent argl) {
// TODO Auto-generated method stub
if(argl.getAction()==MotionEvent. ACTION_DOWN)
{
int x= (int)argl.getX();
inty = (int) argl.getY();
canvas.lsClicked(new Point(x, y));

}

return false;

}

class ButtonOneLisner implements WatchCanvas.OnClickListner

{
@Override

public void OnClick(UIObject uiElement) {
// TODO Auto-generated method stub
WatchCanvas.Button buttonClked = (WatchCanvas.Button)uiElement;
buttonClked.captionText = "Touched";
canvas.DisplayCanvas(null, DisplayOption.DISP_UPDATENDISP);

class ButtonTwolisner implements WatchCanvas.OnClickListner
{
@Override
public void OnClick(UlObject uiElement) {
// TODO Auto-generated method stub
WatchCanvas.Button buttonClked = (WatchCanvas.Button)uiElement;
buttonClked.captionText = "Touched";
canvas.DisplayCanvas(null, DisplayOption.DISP_UPDATENDISP);

}
@Override

public boolean onCreateOptionsMenu(Menu menu) {
getMenulnflater().inflate(R.menu.activity_main, menu);
return true;

class HotWatchConlListner implements HOTSmartWatch.OnConStatusChangelistener

{
@Override

public void OnStatusChnage(BluetoothStatus status) {

77

Smart Watch SDK Technical Specification

// TODO Auto-generated method stub

}
@Override

public boolean onCreateOptionsMenu(Menu menu) {
getMenulnflater().inflate(R.menu.activity_main, menu);
return true;

}
class HotWatchConlListner implements HOTSmartWatch.OnConStatusChangelistener

{
@Override
public void OnStatusChnage(BluetoothStatus status) {
// TODO Auto-generated method stub

7. Conclusion

The HOT Smart watch SDK is currently under development. This is a preliminary document. There can
be changes from the definition given here to the final implementation.

78

